Fitting Non-Parametric Mixture of Regressions: Introducing an EM-Type Algorithm to Address the Label-Switching Problem
نویسندگان
چکیده
The non-parametric Gaussian mixture of regressions (NPGMRs) model serves as a flexible approach for the determination latent heterogeneous regression relationships. This assumes that component means, variances and mixing proportions are smooth unknown functions covariates where error distribution each is assumed to be hence symmetric. These estimated over set grid points using Expectation-Maximization (EM) algorithm maximise local-likelihood functions. However, maximizing function separately does not guarantee local responsibilities corresponding labels, obtained at E-step EM algorithm, align point leading label-switching problem. results in non-smooth In this paper, we propose an estimation procedure account label switching by tracking roughness We use obtain global estimate which then used maximize function. performance proposed demonstrated simulation study through application real world data. case well-separated components, gives similar competitive methods. poorly separated outperforms
منابع مشابه
Allocation Variable-Based Probabilistic Algorithm to Deal with Label Switching Problem in Bayesian Mixture Models
The label switching problem occurs as a result of the nonidentifiability of posterior distribution over various permutations of component labels when using Bayesian approach to estimate parameters in mixture models. In the cases where the number of components is fixed and known, we propose a relabelling algorithm, an allocation variable-based (denoted by AVP) probabilistic relabelling approach,...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولLabel switching using the IPv6 address hierarchy
Current label switching protocols can use routing, address, and address hierarchy information to group flows for cut-throughs that bypass IP forwarding. This paper examines a label switching solution that uses the IP version 6 (IPv6) address structure to classify and cut-through flows based on address hierarchy. The performance of this approach is examined using actual backbone traffic traces w...
متن کاملBayesian Solutions to the Label Switching Problem
Abstract. The label switching problem, the unidentifiability of the permutation of clusters or more generally latent variables, makes interpretation of results computed with MCMC sampling difficult. We introduce a fully Bayesian treatment of the permutations which performs better than alternatives. The method can even be used to compute summaries of the posterior samples for nonparametric Bayes...
متن کاملOn some Variants of the EM Algorithm for the Fitting of Finite Mixture Models
Finite mixture models are being increasingly used in statistical inference and to provide a model-based approach to cluster analysis. Mixture models can be fitted to independent data in a straightforward manner via the expectation-maximization (EM) algorithm. In this paper, we look at ways of speeding up the fitting of normal mixture models by using variants of the EM, including the so-called s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2022
ISSN: ['0865-4824', '2226-1877']
DOI: https://doi.org/10.3390/sym14051058